
MODULE IV

ADVANCED FEATURES OF JAVA

Syllabus

 Java Library -String Handling – String Constructors, String

Length, Special String Operations - Character Extraction,

String Comparison, Searching Strings, Modifying Strings,

using valueOf(), Comparison of StringBuffer and String.

 Collections framework - Collections overview, Collections

Interfaces- Collection Interface, List Interface.

 Collections Class – ArrayList class. Accessing a Collection

via an Iterator.

Java Library

➢The java programming supports different type of classes as

User defines class [A class which is created by user is known

as user defined class.] and also there are some classes available

with java system that provide some important support to the

java programmer for developing their programming logic as

well as their programming architecture with very smooth and

very fine way. These classes are called Library Classes.

String Class

➢String is a class in Java’s class library.

➢ In Java, string is an object that can be represented with a

sequence of char values.

➢An array of characters works same as Java string.

 Eg: char[] ch={'h','e','l','l','o'};

String s= new String(ch);

is same as String s="hello";

➢ Java String class provides a lot of methods to perform

operations on strings. Some of them are length(), equals(),

concat(), split(), compareTo(), replace(), substring() etc

How to create String object?

➢ There are two ways to create String object:

➢By string literal Eg: String s = “Hello”;

➢By new keyword Eg: String s= new String(“Hello”);

1. By String literal

➢String literal is created by double quote. For Example:

String s="Hello";

➢ Each time you create a string literal, the JVM checks the string

constant pool first. String constant pool is a temporary memory

which never stores any duplicate strings. Heap memory stores all

java objects.

➢If the string already exists in the pool, a reference to the pooled

instance returns. If the string does not exist in the pool, a new String

object instantiates, then is placed in the pool. For example:

▪ String s1="Welcome";

▪ String s2="Welcome” ; // no new object will be created

➢In the above example only one object will be created. First

time JVM will find no string object with the name "Welcome"

in string constant pool, so it will create a new object. Second

time it will find the string with the name "Welcome" in string

constant pool,so it will not create new object whether will

return the reference to the same instance.

➢Note: String objects are stored in a special memory area

known as string constant pool inside the Heap memory.

➢Why java uses concept of string literal?

➢To make Java more memory efficient (because no new

objects are created if it exists already in string constant

pool).

2. By new keyword

➢String s=new String("Welcome");//creates two objects and

one reference variable .

➢ In such case, JVM will create a new String object in Heap

memory and the literal "Welcome" will be placed in the

String constant pool.

➢The variable s will refer to the object in Heap memory.

Immutable String in Java

➢ In java, string objects are immutable. Immutable simply means
unmodifiable or unchangeable.

➢ Once string object is created its data or state can't be changed but a
new string object is created.

➢ Example

class Simple{

public static void main(String args[]){

String s="Sachin";

s.concat(" Tendulkar"); //concat() method appends the string

//at the end

System.out.println(s);//will print Sachin because strings are

} } //o/p Sachin immutable objects

➢But if we explicitly assign it to the reference variable, it will
refer to "SachinTendulkar" object.

For example:

class Simple{

public static void main(String args[]) {

String s="Sachin";

s = s.concat("Tendulkar");

System.out.println(s); } } / / o/p SachinTendulkar

Why string objects are immutable in java

➢ Because java uses the concept of string literal.

➢ Suppose there are 5 reference variables, all referes to one

object "sachin".

➢ If one reference variable changes the value of the object, it

will be affected to all the reference variables.

➢That is why string objects are immutable in java.

STRING CONSTRUCTORS

➢The string class supports several types of constructors in

Java APIs. The most commonly used constructors of String

class are as follows:

1. String() : To create an empty String, we will call a

default constructor.

For example: String s = new String();

• It will create a string object in the heap area with no value

2. String(String str) : It will create a string object in the heap area

and stores the given value in it.For example:

String s2 = new String(“Hello Java“);

Now, the object contains Hello Java.

3. String(char chars[]) : It will create a string object and stores

the array of characters in it. For example:

char chars[] = { ‘a’, ‘b’, ‘c’, ‘d’ };

String s3 = new String(chars);

The object reference variable s3 contains the address of the value

stored in the heap area.

➢ Let’s take an example program where we will create a string

object and store an array of characters in it.

➢4. String(char chars[], int startIndex, int count)

➢ It will create and initializes a string object with a

subrange of a character array.

➢The argument startIndex specifies the index at which

the subrange begins and count specifies the number of

characters to be copied.

➢For example:

char chars[] = { ‘w’, ‘i’, ‘n’, ‘d’, ‘o’, ‘w’, ‘s’ };

String str = new String(chars, 2, 3);

➢The object str contains the address of the value ”ndo”

stored in the heap area because the starting index is 2 and

the total number of characters to be copied is 3

Example

5. String(byte byteArr[]) :

➢ It constructs a new string object by decoding the given array of

bytes (i.e, by decoding ASCII values into the characters)

according to the system’s default character set.

6. String(byte byteArr[], int startIndex, int count)
This constructor also creates a new string object by decoding the

ASCII values using the system’s default character set.

STRING LENGTH

➢ The java string length() method gives length of the

string. It returns count of total number of characters.

➢ Internal implementation

public int length() {

return value.length;

}

Signature -The signature of the string length()

method is given below:

public int length()

String length() method : Example 1

Output

String length() method : Example 2

Output

String Comparison

➢We can compare string in java on the basis of content and

reference .

➢There are three ways to compare string in java:

 By equals() method

 By = = operator

 By compareTo() method

➢String compare by equals() method

 The string equals() method compares the original

content of the string.

 It compares values of string for equality. String class

provides two methods

public boolean equals(Object another) compares this string
to the specified object.

public boolean equalsIgnoreCase(String another)
compares this String to another string, ignoring case.

Example 1

String s1="javatpoint";

String s2="javatpoint";

String s3="JAVATPOINT";

String s4="python";

System.out.println(s1.equals(s2));//true because content and case is

//same

System.out.println(s1.equals(s3));//false because case is not same

System.out.println(s1.equals(s4));//false because content is not same

Example 2

String s1="javatpoint";

String s2="javatpoint";

String s3="JAVATPOINT";

String s4="python";

System.out.println(s1.equalsIgnoreCase(s2));//true because

//content and case both are same

System.out.println(s1.equalsIgnoreCase(s3));//true because

//case is ignored

System.out.println(s1.equalsIgnoreCase(s4));//false because

//content is not same

String compare by == operator

• The = = operator compares references not values.

String compare by compareTo() method

➢ The string compareTo() method compares values

lexicographically and returns an integer value that describes

if first string is less than, equal to or greater than second string.

Signature

public int compareTo(String anotherString)

Suppose s1 and s2 are two string variables.

If: s1 == s2 : 0

s1 > s2 : positive value

s1 < s2 : negative value

Example 1

String s1="hello";

String s2="hello";

String s3="meklo";

String s4="hemlo";

String s5="flag";

System.out.println(s1.compareTo(s2));//0 because both are equal

System.out.println(s1.compareTo(s3));

//-5 because "h" is 5 times lower than "m"

System.out.println(s1.compareTo(s4));

//-1 because "l" is 1 times lower than "m"

System.out.println(s1.compareTo(s5));//2 because "h" is 2 times

// greater than "f"

SEARCHING STRINGS

➢String contains()

➢The java string contains() method searches the sequence

of characters in this string.

➢ It returns true if sequence of char values are found in this

string otherwise returns false.

Signature

➢ The signature of string contains() method is given below:

public boolean contains(CharSequence sequence)

Example 1

class ContainsExample{

public static void main(String args[]){

String name="what do you know about me";

System.out.println(name.contains("do you know"));

System.out.println(name.contains("about"));

System.out.println(name.contains("hello"));

}} // o/p true

true

false

➢The contains() method searches case sensitive char sequence.

If the argument is not case sensitive, it returns false. Let's see an

example below.

➢Example 2

public class ContainsExample2 {

public static void main(String[] args) {

String str = "Hello Javatpoint readers";

boolean isContains = str.contains("Javatpoint");

System.out.println(isContains); // Case Sensitive , so true

System.out.println(str.contains("javatpoint")); // false

} // Output

} true

false

➢The contains() method is helpful to find a char-sequence in the

string. We can use it in control structure to produce search based

result. Let us see an example below.

➢Example 3

public class ContainsExample3 {

public static void main(String[] args) {

String str = "To learn Java visit Javapoint.com";

if(str.contains("Javapoint.com")) {

System.out.println("This string contains javapoint.com");

}else

System.out.println("Result not found");

}

} // o/p : This string contains javapoint.com

CHARACTER EXTRACTION

➢ String charAt()

➢The java string charAt() method returns a char value at the

given index number.

➢The index number starts from 0 and goes to n-1, where n is

length of the string.

➢ It returns StringIndexOutOfBoundsException if given index

number is greater than or equal to this string length or a

negative number.

➢ Signature -The signature of string charAt() method is

given below: public char charAt(int index)

Example 1

Output

t

StringIndexOutOfBoundsException with charAt()

➢ Let's see the example of charAt() method where we are passing greater

index value.

➢ In such case, it throws StringIndexOutOfBoundsException at run time.

Example 2

➢ Let's see a simple example where we are accessing first and last

character from the provided string.

//o/p Character at 0 index is: W

Character at last index is: l

Example 3

➢ Let's see an example where we are accessing all the elements

present at odd index. Output

Example 4

➢ Let's see an example where we are counting frequency of a

character in the string.

Output

Frequecy of t is: 4

MODIFY STRINGS

➢The java string replace() method returns a string replacing all

the old char or CharSequence to new char or CharSequence.

Signature

➢There are two type of replace methods in java string.

➢public String replace(char oldChar, char newChar) and

➢ public String replace(CharSequence target, CharSequence

replacement)

➢The second replace method is added since JDK 1.5.

String replace(char old, char new) method

Example

public class ReplaceExample1{

public static void main(String args[]){

String s1="java is a very good language";

// replaces all occurrences of 'a' to 'e‘

String replaceString=s1.replace('a','e');
System.out.println(replaceString);

}

}

//Output jeve is e very good lenguege

String replace(CharSequence target, CharSequence

replacement)

Example

Output

my name was khan my name was java

Output

Example

String replaceAll()

➢ The java String replaceAll() method returns a string replacing all the
sequence of characters matching regex and replacement string.

➢ regex is any regular exxpression

➢ Signature
➢public String replaceAll(String regex, String replacement)

Example
public class ReplaceAllExample1{
public static void main(String args[]){
String s1="java is a very good language";
String replaceString=s1.replaceAll("a","e");
System.out.println(replaceString); }}

//Output jeve is e very good lenguege

/*Note: String replaceAll(String regex, String replacement) and
String replace(CharSequence target, CharSequence replacement)
work similarly. Here regex means regular expressions.*/

String replaceAll() example: remove white spaces
Let's see an example to remove all the occurrences of white

spaces.

Example

Output

MynameiskhanMynameisBobMynameisSonoo

STRING VALUE OF ()
➢ The java String valueOf() method converts different types of

values into string.

➢ By the help of string valueOf() method, we can convert int to
string, long to string, boolean to string, character to string, float to
string, double to string, object to string and char array to string.

Signature

➢ The signature or syntax of string valueOf() method is given
below:

public static String valueOf(boolean b)

public static String valueOf(char c)

public static String valueOf(char[] c)

public static String valueOf(int i)

public static String valueOf(long l)

public static String valueOf(float f)

public static String valueOf(double d)

public static String valueOf(Object o)

valueOf() method example

Example

Output

3010

valueOf(char ch) Method

➢This is a char version of overloaded valueOf() method. It

takes char value and returns a string.

Example

Output

A

B

valueOf(float f) and valueOf(double d)

➢ This is a float version of overloaded valueOf() method. It

takes float value and returns a string.

Example

Output

10.05

10.02

valueOf(boolean bol) Method

➢This is a boolean version of overloaded valueOf() method. It takes

boolean value and returns a string.

Example

Output

true

false

Other String methods
 Let String s= “HelloWorld”

 String substring (int i): Return the substring from the ith index character

to end.

s.substring(3); // returns “loWorld”

 String substring (int i, int j): Returns the substring from i to j-1 index.

s.substring(2, 5); // returns “llo”

 String concat(String str): Concatenates specified string to the end of

this string. Let String s1 = ”Hello”; String s2 = ”World”;

String output = s1.concat(s2); // returns “HelloWorld”

 Note: Java string concatenation operator (+) is used to add strings.

For Example: String s="Sachin"+"Tendulkar";

System.out.println(s);//SachinTendulkar

Other String methods

 int indexOf (String s): Returns the index within the string of

the first occurrence of the specified string.

 String s = ”Learn Share Learn”; int output = s.indexOf(“Share”);

// returns 6

 int indexOf (String s, int i): Returns the index within the

string of the first occurrence of the specified string, starting at the

specified index. String s = ”Learn Share Learn”;

int output = s.indexOf("ea",3); // returns 13

 Int lastIndexOf(String s): Returns the index within the

string of the last occurrence of the specified string. String s =

”Learn Share Learn”;

int output = s.lastIndexOf("a"); // returns 14

Other String methods

 String toLowerCase(): Converts all the characters in the String

to lower case.String word1 = “HeLLo”;

String word3 = word1.toLowerCase(); // returns “hello"

 String toUpperCase(): Converts all the characters in the String

to upper case.String word1 = “HeLLo”;

String word2 = word1.toUpperCase(); // returns “HELLO”

 String trim(): Returns the copy of the String, by removing

whitespaces at both ends. It does not affect whitespaces in the

middle.String word1 = “ Learn Share Learn “;

String word2 = word1.trim(); // returns “Learn Share Learn”

String and StringBuffer

➢ Java StringBuffer class is used to create mutable (modifiable) string. The
StringBuffer class in java is same as String class except it is mutable i.e. it
can be changed.

Important Constructors of StringBuffer class

➢Mutable string - A string that can be modified or

changed is known as mutable string. StringBuffer and

StringBuilder classes are used for creating mutable string.

StringBuffer append() method

➢The append() method concatenates the given argument with
this string.

class StringBufferExample{

public static void main(String args[]){

StringBuffer sb=new StringBuffer("Hello");

sb.append("Java");//now original string is changed

System.out.println(sb);//prints Hello Java

}

}

//o/p HelloJava

StringBuffer insert() method

➢The insert() method inserts the given string with this string
at the given position.

class StringBufferExample2{

public static void main(String args[]){

StringBuffer sb=new StringBuffer("Hello ");

sb.insert(1,"Java");//now original string is changed

System.out.println(sb);//prints HJavaello

}

}

// o/p HJavaello

StringBuffer replace() method

➢The replace() method replaces the given string from the
specified beginIndex and endIndex.

class StringBufferExample3{

public static void main(String args[]){

StringBuffer sb=new StringBuffer("Hello");

sb.replace(1,3,"Java");

System.out.println(sb);//prints HJavalo

}

}

// o/p HJavalo

StringBuffer delete() method

➢The delete() method of StringBuffer class deletes the string
from the specified beginIndex to endIndex.

class StringBufferExample4{

public static void main(String args[]){

StringBuffer sb=new StringBuffer("Hello");

sb.delete(1,3);

System.out.println(sb);//prints Hlo

}

}

//o/p Hlo

StringBuffer reverse() method

➢The reverse() method of StringBuilder class reverses the
current string.

class StringBufferExample5{

public static void main(String args[]){

StringBuffer sb=new StringBuffer("Hello");

sb.reverse();

System.out.println(sb);//prints olleH

}

}

//o/p olleH

StringBuffer capacity() method
➢ The capacity() method of StringBuffer class returns the current capacity

of the buffer. The default capacity of the buffer is 16. If the number of
character increases from its current capacity, it increases the capacity by
(oldcapacity*2)+2. For example if your current capacity is 16, it will
be (16*2)+2=34.

class StringBufferExample6{

public static void main(String args[]){

StringBuffer sb=new StringBuffer();

System.out.println(sb.capacity());//default 16

sb.append("Hello");

System.out.println(sb.capacity());//now 16

sb.append("java is my favourite language");

System.out.println(sb.capacity());//now (16*2)+2=34 i.e (oldcapacity*2)+2

}

}

String array is also possible

Example

class StringDemo3

{

public static void main(String args[])

{

String str[] = { "one", "two", "three" };

for(int i=0; i<str.length; i++)

System.out.println("str[" + i + "]: " + str[i]);

}

}

// o/p str[0]: one

str[1]: two

str[2]: three

Write a java program to read 3 strings from user and display the

strings in uppercase

COLLECTIONS IN JAVA

➢The Collection in Java is a framework that provides an

architecture to store and manipulate the group of objects.

➢ Java Collections can achieve all the operations that you

perform on a data such as searching, sorting, insertion,

manipulation, and deletion.

➢ Java Collection means a single unit of objects. Java

Collection framework provides many interfaces (Set, List,

Queue, Deque) and classes (ArrayList, Vector, LinkedList,

PriorityQueue, HashSet, LinkedHashSet,TreeSet).

Collection in Java - Represents a single unit of objects, i.e., a

group.

framework in Java

➢ It provides readymade architecture.

➢ It represents a set of classes and interfaces.

➢ It is optional.

Collection framework

➢The Collection framework represents a unified architecture for

storing and manipulating a group of objects. It has:

➢ • Interfaces and its implementations, i.e., classes

➢• Algorithm

Hierarchy of Collection Framework

➢The java.util package contains all the classes and interfaces

for the Collection framework.

Collection Interface

➢ The Collection interface is the interface which is

implemented by all the classes in the collection framework.

➢ It declares the methods that every collection will have. In

other words, we can say that the Collection interface builds

the foundation on which the collection framework depends.

➢ Some of the methods of Collection interface are Boolean add

(Object obj), Boolean addAll (Collection c), void clear(),

etc. which are implemented by all the subclasses of

Collection interface.

LIST INTERFACE

➢ List interface is the child interface of Collection

interface.

➢It inhibits a list type data structure in which we can store

the ordered collection of objects.

➢It can have duplicate values.

➢ List interface is implemented by the classes ArrayList,

LinkedList, Vector, and Stack.

➢ To instantiate the List interface, we must use :

List list1= new ArrayList();

List list2 = new LinkedList();

List list3 = new Vector();

List list4 = new Stack();

➢There are various methods in List interface like add(Object o),
remove(int index), get(int index) etc that can be used to insert,
delete, and access the elements from the list.

➢The classes that implement the List interface are given below.

ArrayList

➢The ArrayList class implements the List interface.
Java ArrayList class uses a dynamic array for storing the
elements. It is like an array, but there is no size limit. We can
add or remove elements anytime.

Array Vs ArrayList

Constructor & Description of ArrayList

1ArrayList()
 This constructor builds an empty array list.

2ArrayList(Collection c)
 This constructor builds an array list that is initialized with the

elements of the collection c.

3ArrayList(int capacity)
 This constructor builds an array list that has the specified

initial capacity. The capacity is the size of the underlying array
that is used to store the elements. The capacity grows
automatically as elements are added to an array list.

➢ ArrayList is a generic class that has the following declaration: class
ArrayList<E>.Here, E specifies the type of objects that the list ill
hold. Consider the following example.

Example

import java.util.*;

public class ArrayListExample1{

public static void main(String args[]){

ArrayList<String> list=new ArrayList<String>();/*Creating

arraylist*/

list.add("Mango");//Adding object in arraylist

list.add("Apple");

list.add("Banana");

list.add("Grapes");

//Printing the arraylist object

System.out.println(list);

} // Output

} // [Mango, Apple, Banana, Grapes]

➢ Java ArrayList class uses a dynamic array for storing the

elements.

➢ It is like an array, but there is no size limit. We can add or

remove elements anytime.

➢ So, it is much more flexible than the traditional array. It is

found in the java.util package. It is like the Vector in C++.

➢The ArrayList in Java can have the duplicate elements also. It

implements the List interface so we can use all the methods

of List interface here.

➢The ArrayList maintains the insertion order internally.

➢ArrayList inherits the AbstractList class and implements List

interface.

The important points about Java ArrayList class are:

➢ Java ArrayList class can contain duplicate elements.

➢ Java ArrayList class maintains insertion order.

➢ Java ArrayList class is non synchronized.

➢ Java ArrayList allows random access because array works at

the index basis.

➢ In ArrayList, manipulation is little bit slower than the

LinkedList in Java because a lot of shifting needs to occur if

any element is removed from the array list.

Iterating ArrayList using Iterator

➢An iterator is an interface.

➢ It can be used to loop through collections,
like ArrayList and HashSet. It is called an "iterator" because
"iterating" is the technical term for looping.

➢ Iterator object can be created by calling iterator() method
present in Collection interface.

➢ Iterator interface defines three methods:

1. public boolean hasNext(); /* Returns true if the iteration
has more elements*/

2. public Object next(); /* Returns the next element in the
iteration*/

3. public void remove(); /* Remove the next element in the
iteration*/

Iterating ArrayList using Iterator

import java.util.*;

public class ArrayListExample2{

public static void main(String args[]){

ArrayList<String> list=new ArrayList<String>();//Creating ArrayList

list.add("Mango");//Adding object in ArrayList

list.add("Apple"); //Output:

list.add("Banana"); Mango

list.add("Grapes"); Apple

//Traversing list through Iterator Banana

Iterator itr=list.iterator();//getting the Iterator Grapes

while(itr.hasNext()){//check if iterator has the elements

System.out.println(itr.next());//printing the element and move to next

} } }

import java.util.*;

classTestJavaCollection1{

public static void main(String args[]){

ArrayList<String> list=new ArrayList<String>();/*Creating

arraylist of String type objects */

list.add("Ravi");//Adding object in arraylist

list.add("Vijay");

list.add("Ravi");

list.add("Ajay");

//Traversing list through Iterator // Output

Iterator itr=list.iterator(); Ravi

while(itr.hasNext()){ Vijay

System.out.println(itr.next()); Ravi

} } } Ajay

